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Abstract—This paper develops an efficient model for power
system restoration after natural disasters based on AC power
flow constraints. The objective is to derive the optimal restoration
schedule in order to minimize the real power load interruptions
in the post-disaster phase. The load criticality is represented
by using the value of lost load which prioritizes the loads to
be restored. A linear AC formulation is further proposed to
allow the calculation of voltage angle and reactive power in the
network, hence ensuring a more practical solution compared to
DC power flow based models. Mixed-integer programming is used
to formulate the proposed restoration model. Numerical analysis
on the IEEE 118-bus test system demonstrates the effectiveness
and the applicability of the proposed restoration model.

Index Terms—AC power flow, natural disaster, mixed-integer
programming, power system restoration.

NOMENCLATURE

Indices:
b Index for buses.
i Index for generation units.
l Index for transmission lines.
t Index for time.

Parameters:
SLmax

l Apparent power flow capacity in line l.
bl Susceptance of line l.
PDbt Active load at bus b at time t.
QDbt Reactive load at bus b at time t.
gl Conductance of line l.
M Large positive constant.
Pmax
i Maximum active power generation of unit i.
Pmin
i Minimum active power generation of unit i.
PLmax

l Maximum active power flow capacity of line l.
Qmax

i Maximum reactive power generation of unit i.
Qmin

i Minimum reactive power generation of unit i.
QLmax

l Maximum reactive power flow of line l.
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Rkt Number of crew members allocated to compo-
nent k at time t.

Rmin
k Number of hourly required crew to repair com-

ponent k at time t.
Rmax

t Maximum available repair crew at time t.
Si Apparent power capacity of generation unit i.
TTRk Time to repair for component k.
V max
b Maximum voltage magnitude at bus b.
V min
b Minimum voltage magnitude at bus b.
Ṽbt Fixed voltage magnitude of bus b at time t.
V OLLbt Value of lost load at bus b at time t.
αib Element of unit i and bus b in generation-bus

incidence matrix.
βlb Element of line l and bus b in line-bus inci-

dence matrix.
γk Angle of an ellipse.

Variables:
ĉosnmt An auxiliary variable for cosine of voltage

angle difference between buses n and m at time
t.

Iit Unit commitment variable for generation of
unit i at time t; 1 if committed, otherwise 0.

LIbt Active load interruption at bus b at time t.
LLbt Reactive power shortage at bus b at time t.
nit Auxiliary binary variable.
Pit Active power generation of unit i at time t.
PLlt Active Power flow of line l at time t.
Qit Reactive power generation of unit i at time t.
QLlt Reactive power flow of line l at time t.
ubt Binary repair state of bus b at time t.
Vbt Voltage magnitude of bus b at time t.
vlt Binary repair state of line l at time t.
wlt Binary outage state of line l at time t; 0 if

offline due to damage, otherwise 1.
yit Binary outage state of unit i at time t; 0 if

offline due to damage, otherwise 1.
zbt Binary outage state of bus b at time t; 0 if

offline due to damage, otherwise 1.
δbt Voltage angle of bus b at time t.



I. INTRODUCTION

The increasing number of natural disasters and extreme
weather events with devastating aftermaths have significantly
impacted the electricity infrastructure and reliable supply of
power to consumers in recent years. This issue calls for new
research efforts in more accurate modeling of these events and
development of efficient recovery schemes to minimize load
interruptions. Among other factors, an accurate modeling of
the power network is of ultimate importance to obtain a more
practical recovery solution for the system.

Many of current power network models rely on a DC power
flow approximate to determine system behavior. [1] examines
the merits of different versions of DC models for various
applications. Different categories of DC models, e.g., hot-start,
cold-start, sparse, and sensitivity factor models are analyzed.
The results show that the accuracy of DC power models in
general must never be taken for granted. It has been shown in
recent published studies that the accuracy of DC power flow
model in circumstances other than the normal operating condi-
tion is under question. Therefore, it is imperative to utilize AC
power flow models which are demonstrated to provide a more
reliable solution for applications such as restoration planning
[2]. However, the tradeoff between computational efficiency
and exactness of obtained solutions for AC models remains an
open problem in various applications. In this context, a linear-
programming approximation of AC power flows is proposed
in [2]. A linear relaxation of DC and AC models to obtain
efficient models for transmission system planning is presented
in [3]. Recent advances in convex relaxation of optimal power
flow (OPF) problem for different power network models can
be found in [4], [5].

In context of restoration, [6] studies the budgeted and the
minimum weighted latency variants of the recovery problem
of large-scale power outage due to a major disaster. The
problems for the general case as well as trees and bipartite
networks as the special case are studied. In [7], a mixed-
integer program to model the recovery of the transmission
networks damaged due to disasters is formulated. The model
considers the repair crew constraints as well as the penalty
cost of unserved loads to find the recovery schedule which
minimizes the cost of power outage. [8] uses a mixed-integer
programming framework for modeling the optimal supply
restoration of the faulty power distribution systems. A two-
step decomposition method is developed to derive the optimal
configuration as well as the optimal switching sequence of the
power distribution system. In [9], a general multi-objective
linear-integer spatial optimization model for arcs and nodes
restoration of disrupted networked infrastructure after disas-
ter is presented. The proposed model addresses the tradeoff
between maximization of the system flow and minimization
of system cost. [10] proposes an integrated network design
and scheduling problem for restoration of the interdependent
civil infrastructure. The problem is formulated using integer
programming, and is analyzed on realistic dataset of power
infrastructure of the Lower Manhattan in New York City and

New Hanover County, North Carolina. The results indicate that
the proposed model can be used for real-time as well as long-
term restoration planning. In another study, [11] considers “the
last-mile restoration” of power systems, i.e., how to schedule
and allocate the routes to the fleets of repair crews to recover
the damaged power system as quickly as possible. The power
restoration and vehicle routing are decoupled to improve the
computational efficiency of the model. The proposed model
outperforms the models which are practiced in the field in
terms of solution quality and scalability. This work is ex-
tended in [12] by applying the randomized adaptive vehicle
decomposition technique in order to improve the scalability
of the model for large-scale disaster restoration of the power
networks with more than 24,000 components.

In this paper, we extend our previous work [13] and [14] on
restoration planning to integrate AC power flow constraints.
The outage and repair constraints associated with damaged
components are modeled with a focus on the outage of the
component or any of the connected substations. A linear
AC formulation is proposed to maintain the computational
efficiency of the proposed model. Mixed-integer programming
is used to formulate the problem.

The rest of paper is organized as follows: the proposed
restoration model is described in Section II and formulated in
Section III. Numerical studies are provided in Section IV to
exhibit the effectiveness of the proposed model when applied
to a test power system. Finally, the conclusions are drawn in
Section V.

II. MODEL DESCRIPTION

Natural disasters, such as hurricanes, can potentially damage
power system components including generation units, trans-
mission lines, substations, as well as downstream distribution
lines. We propose a post-disaster restoration model to be used
by Transmission & Distribution (T&D) utility companies to
schedule the restoration of damaged transmission and distri-
bution infrastructure in coordination with generation units.

After the disaster, the utility company conducts a damage
assessment by an aerial survey of the power network in
affected areas as well as a ground check by inspectors. Damage
assessment determines whether a component is damaged at all,
and if damaged, estimates the mean time to repair (TTR) for
the component. Each substation along with its downstream
distribution lines are aggregated and considered as a single
component. Hence, the time to repair for each substation
is aggregated in our model. While generation units are part
of a vertically integrated utility company, it is assumed in
our model that each generation unit is responsible for repair
operations of its damaged facilities. Therefore, each damaged
generation unit will submit its repair schedule to the utility
company to be used as an input for restoration scheduling
of transmission and distribution infrastructure. We consider
two states for each component: damaged, if the component
is encountered major damage, thus it is offline and needs
to be repaired to be restored; and functional, if it has not



been damaged at all, or minor damages have occurred and the
component is able to function.

We consider an AC power flow model which has proven to
provide more accurate solutions for power system restoration.
Furthermore, we propose a polyhedral inner approximation
method for linearizing the quadratic apparent power equation.
Therefore, we propose a restoration model with fully linearized
AC constraints to ensure practicality and computational ef-
ficiency. The model intends to minimize the customer load
interruption cost considering the value of lost load (VOLL).
The output of the proposed model includes the post-disaster
restoration schedule, power dispatch, bus voltage angles, and
transmission network configuration.

III. PROBLEM FORMULATION

A. Objective Function

The objective of the proposed restoration model is to
minimize the real load interruption cost as follows:

min
LI

∑
t

∑
b

V OLLbtLIbt, (1)

where V OLLbt reflects the criticality of the loads to be
recovered. A higher value of lost load results in a faster
recovery of the transmission lines and substations connected
to that load.

B. Power Balance Equation

The active load interruption is considered as a negative load
(i.e., a virtual generation) and is obtained from the active
power balance equation as follows:∑

i∈Nb

Pit +
∑
l∈Nb

PLlt + LIbt = PDbt, ∀b,∀t. (2)

The active power balance equation ensures that the injected
active power to a bus from connected transmission lines and
generating units matches the load, and if not adequate, the
load will be curtailed by the active load interruption variable.

Similarly, the reactive power demand at each bus has to
be supplied through generation units and transmission lines.
Therefore, the reactive power balance equation is∑

i∈Nb

Qit +
∑
l∈Nb

QLlt + LLbt = QDbt, ∀b,∀t, (3)

where, Nb is the set of connected generation units and trans-
mission lines to bus b. Note that in many cases the reactive
power shortage can be handled locally using available reactive
power compensators in distribution networks.

C. Generation Outage and Capacity Constraints

The generation units’ active and reactive power generations
are limited to their minimum and maximum capacities. Binary
variables yit and zbt are defined to model outage of the
generating unit and the connected substation. yit is equal to 0
if the generation unit i is offline at time t due to damage from
disaster; otherwise it is equal to 1. The active and reactive
power generations in each unit i are bounded to damage state,

commitment state, and minimum and maximum generation
capacity as

Pmin
i yitIit ≤ Pit ≤ Pmax

i yitIit, ∀i,∀t, (4)

Qmin
i yitIit ≤ Qit ≤ Qmax

i yitIit, ∀i,∀t. (5)

The active and reactive power generation limits turn out to
be nonlinear constraints. To linearize these constraints an
auxiliary variable nit = yitIit is defined to decompose the
constraint (4) as follows:

Pmin
i nit ≤ Pit ≤ Pmax

i nit, ∀i,∀t, (6)

nit − yit ≤ 0, ∀i,∀t, (7)

nit − Iit ≤ 0, ∀i,∀t, (8)

−nit + yit + Iit ≤ 1, ∀i,∀t, (9)

nit ≥ 0, ∀i,∀t. (10)

Constraint (5) can be linearized in the same manner. Further-
more, zbt is used to represent the outage of substation b at time
t. The outage of the generating unit or the associated substation
are incorporated to model the active and reactive power
generation capacity constraints to impose a zero generation
when any of these components is on outage. Therefore,

−M
∑
b

αibzbt ≤ Pit ≤M
∑
b

αibzbt, ∀i,∀t, (11)

−M
∑
b

αibzbt ≤ Qit ≤M
∑
b

αibzbt, ∀i,∀t. (12)

Generator capability curve is an important constraint which
needs to be taken into account as follows:

P 2
it +Q2

it ≤ S2
i , ∀i,∀t, (13)

which is a quadratic equation of a semi ellipse (in fact, the
power capability curve is a circle which is a special case
of ellipse). Therefore, we can approximate this curve as a
polygon or polyhedron by adding linear constraints. As shown
in Fig. 1, by dividing the semi ellipse into k slices, each
with angle γk, we can approximate the feasible region of the
generator capability curve as a semi polygon (for the sake
of illustration of the idea, we have considered the Pmax

i and
Qmax

i as the length of semi major and semi minor axis of the
ellipse, respectively. The corresponding equation for each side
of the polygon (i.e., each line that cuts the semi ellipse) is
obtained as follows:

Pit − Pmax
i cos γk

Qit −Qmax
i sin γk

=
Pmax
i cos γk+1 − Pmax

i cos γk
Qmax

i sin γk+1 −Qmax
i sin γk

,

∀i,∀t,∀k, (14)



Fig. 1. Inner polyhedral linearization of the generation capacity curve.

therefore, we have,

Qit −

(
Qmax

i

(
sin γk+1 − sin γk

)
Pmax
i

(
cos γk+1 − cos γk

))Pit ≤

Qmax
i

(
sin γk −

cos γk

(
sin γk+1 − sin γk

)
cos γk+1 − cos γk

)
,

∀i,∀t,∀k, (15)

Due to the symmetric shape of semi ellipse, the following
constraints are imposed for the inner linear approximation of
their lower half:

Qit +

(
Qmax

i

(
sin γk+1 − sin γk

)
Pmax
i

(
cos γk+1 − cos γk

))Pit ≥

−Qmax
i

(
sin γk −

cos γk

(
sin γk+1 − sin γk

)
cos γk+1 − cos γk

)
,

∀i,∀t,∀k, (16)

D. Transmission Outage and Capacity Constraints

The active and reactive power flows in each transmission
line are bounded to the maximum and minimum capacity. If
a transmission line or any of the substations at the two ends
of the transmission line are on outage, the line will be offline,
hence the associated active and reactive power flows are set to
zero. Binary variable wlt is equal to 0, if the line l is offline
at time t due to damage from disaster; otherwise, it is equal
to 1. Therefore,

−PLmax
l wlt ≤ PLlt ≤ PLmax

l wlt, ∀l,∀t, (17)

−QLmax
l wlt ≤ QLlt ≤ QLmax

l wlt, ∀l,∀t. (18)

On the other hand, if any of the connected substations on two
sides of the transmission line are damaged and are not restored
by time t (i.e., zbt=0), the associated active and reactive power
flows in transmission line l will be equal to zero as shown in
(19)-(22).

−M
∑
b

βfrom
lb zbt ≤ PLlt ≤M

∑
b

βfrom
lb zbt, ∀l,∀t, (19)

−M
∑
b

|βto
lb |zbt ≤ PLlt ≤M

∑
b

|βto
lb |zbt, ∀l,∀t, (20)

−M
∑
b

βfrom
lb zbt ≤ QLlt ≤M

∑
b

βfrom
lb zbt, ∀l,∀t, (21)

−M
∑
b

|βto
lb |zbt ≤ QLlt ≤M

∑
b

|βto
lb |zbt, ∀l,∀t, (22)

where βfrom includes all positive elements of the bus-line
incidence matrix and βto includes all negative elements of
the bus-line incidence matrix. Finally, the transmission line
apparent power flow constraint holds as follows:

PL2
lt +QL2

lt ≤ SL2
lt, ∀l,∀t, (23)

which is the equation of an ellipse, similar to generation capa-
bility curve. Using the same approach that was proposed for
generation capability curve, the apparent power flow capacity
can be linearized.

E. Voltage Control

In order to maintain the system stability, all voltages must
be within the minimum and maximum limits as

V min
bt ≤ Vbt ≤ V max

bt , ∀b,∀t. (24)

It is assumed that the magnitude of voltage at each node can be
obtained from the AC based-point solution, i.e., Ṽbt. It is also
assumed that approximation of sin(δnt−δmt) ≈ δnt−δmt for
small phase angle difference is accurate [2]. Based on these
assumptions, the active and reactive power flows at each line
are approximated as

PLlt = |Ṽnt|
2
gl − |Ṽnt||Ṽmt|

(
glĉosnmt + bl(δnt − δmt)

)
,

∀〈m,n〉 ∈ Nl,∀t, (25)

QLlt = −|Ṽnt|
2
bl−|Ṽnt||Ṽmt|

(
gl(δnt− δmt)− blĉosnmt

)
,

∀〈m,n〉 ∈ Nl,∀t. (26)

As shown, a linear system of equations are formed in (25)-
(26). The cosine function of voltage angle difference between
nodes m and n is considered as a continuous variable ĉosnmt.
We can also consider sin(δnt − δmt) ≈ δnt − δmt as another
continuous variable ŝinnmt, and add a constraint to the model



Fig. 2. A polyhedral relaxation of cosine using seven inequalities [2].

in order to control and approximate the voltage angle differ-
ence, as follows:

ŝin
2

nmt + ĉos
2
nmt = 1, ∀〈m,n〉 ∈ Nl,∀t, (27)

which is equation for a circle. Using the same manner as gen-
eration capability curve and apparent power flow capacity, this
constraint can be approximated as a polygon. An alternative
approach is a polyhedral relaxation of the cosine function by
constraining it to a set of hyperplane tangents proposed in [2].
As shown in Fig. 2, the tangent line to the cosine function in
a given point a was defined in [2] by

y = − sin(a)(x− a) + cos(a) ∀a ∈ (−π/2, π/2). (28)

By evenly spacing the phase angle difference domain into
h hyperplanes, the distance d between tangent points is
obtained by d = π/(h + 1). In [2] the summation of ĉosnmt

was maximized in the objective function, and the following
linear constraints were imposed to construct the polyhedral
relaxation

ĉosnmt ≤ − sin(jd− π/2)(δnt − δmt − jd+ π/2)

+ cos(jd− π/2), ∀j ∈ {1, 2, ..., h},∀〈m,n〉 ∈ Nl,∀t.
(29)

However, maximizing summation of ĉosnmt in objective func-
tion requires to solve a bi-objective problem which is not
always desirable. Beside, the small range of cosine function’s
value compared to the much larger scale of other terms in the
objective function can be problematic.

F. Restoration Resource Modeling

Constraints (30)-(31) present the relationships among binary
outage variables wlt and zbt with repair decision variables vlt
and ubt, respectively. If the transmission line l at time t is on
outage, the binary variable wlt which represents the line outage
state would be equal to zero. Once it is repaired, the value
of wlt becomes 1, and remains the same up to the end of the
outage management horizon. vlt is the repair decision variable
of transmission line l, in a sense that, when the line l is under
repair at time t, the vlt takes the value of 1, otherwise it is 0. In
the same way, zbt is the binary outage variable for substation

b, which is equal to 0 when substation b at time t is on outage;
Once it is repaired the value of wlt becomes 1, and remains
the same up to the end of the outage management horizon.
ubt is the decision variable for maintenance of substation b,
which takes the value of 1, when the substation is under repair,
otherwise it is equal to 0.

0 ≤ wlt − (

t∑
k=1

vlk − TTRl + 0.5)/M ≤ 1 ∀l,∀t, (30)

0 ≤ zbt − (

t∑
k=1

ubk − TTRb + 0.5)/M ≤ 1 ∀b,∀t. (31)

Constraint (32) represents the time that a damaged generation
unit comes back to the system after repair. As earlier described,
the utility company has no control over the restoration of
generating units. However, the generating unit repair time is
collected by the transmission company, and is incorporated in
the restoration scheduling and coordination.

yit = 0 if t ≤ TTRi ; otherwise yit = 1, ∀i,∀t. (32)

However, since if-then constraint is not allowed in linear
programming, constraint (32) is formulated as

t−Myit ≤ TTRi, ∀i,∀t, (33)

Myit ≤ TTRi, ∀i,∀t = 0, 1, ..., TTRi. (34)

Each damaged transmission line or substation should receive
the required time and resources to be restored. In this model, it
is assumed that once the restoration operation on a particular
component is started, it should be continued for a duration of at
least time to repair (TTR) of the component. Constraints (35)-
(36) guarantee that enough time and resources are allocated
to each damaged component to be repaired. Moreover, these
constraints eliminate partial repair operation on each damaged
component.

t+TTRl−1∑
k=t

vlk ≥ TTRl(vlt − vl(t−1)), ∀l,∀t, (35)

t+TTRb−1∑
k=t

ubk ≥ TTRb(ubt − ub(t−1)), ∀b,∀t. (36)

Restoration resource limitation is modeled as follows:

Rlt ≥ Rmin
l vlt, ∀l,∀t, (37)

Rbt ≥ Rmin
b ubt, ∀b,∀t, (38)∑

l

Rlt +
∑
b

Rbt ≤ Rmax
t , ∀t. (39)

where (37)-(38) represent the required number of crews to be
allocated at time t to line l, and substation b, respectively; and
(39) indicates the maximum number of available crew that can
be allocated during each hour.



IV. NUMERICAL EXAMPLE

The standard IEEE 118-bus test system is used for nu-
merical analysis of the proposed restoration model. It is
assumed that four substations, five transmission lines, and
three generation units have damaged, and are required to be
restored. Among damaged substations, three of them (i.e.,
B2, B3, and B11) are load buses, feeding their downstream
distribution lines. Table I indicates the time it takes from the
beginning of the restoration process to repair and restore each
damaged generating unit. Second column of Tables II and III
show the estimated repair duration of damaged substations
(along with their downstream distribution lines) and damaged
transmission lines, respectively.

The value of lost load is assumed to be $100/kWh for crit-
ical loads, e.g. medical centers, $37.06/kWh for commercial
loads, and $1.1/kWh for residential loads as they were used
in [13]. Among damaged buses, B4 is connected to a critical
load, B11 is connected to a commercial load, and the rest of
the substations are connected to residential loads. Without loss
of generality, the value for voltage magnitude in all nodes are
considered to be 1 p.u. Each hour of restoration operation on a
substation requires the crew size of 15 people, while it requires
the crew of 20 people per hour for each transmission line. The
total number of available crew is limited to 80 people per hour.
The restoration planning horizon is set to be 120 hours.

TABLE I
DAMAGED GENERATION UNITS AND TIME TO REPAIRS

Unit Number Time to Repair
G2 15
G3 24
G5 12

TABLE II
DAMAGED SUBSTATIONS, TTRS, AND RESTORATION SCHEDULES

Bus Number Time to Repair AC Schedule DC Schedule
B2 14 1-14 8-21
B4 18 1-18 1-18
B8 7 85-91 1-7
B11 22 1-22 1-22

TABLE III
DAMAGED TRANSMISSION LINES, TTRS, AND RESTORATION SCHEDULES

Line Number Time to Repair AC Schedule DC Schedule
L1 15 19-33 19-33
L2 10 1-10 1-10
L10 20 11-30 22-41
L14 17 15-31 22-38
L16 18 19-36 16-33

The proposed AC model for the described system data
is solved using CPLEX 12.1 with 0.01 relative optimality
gap. In addition, by removing AC power flow constraints
from the model, a DC version of the proposed restoration
model is solved. The third and fourth columns of Tables
II and III show the optimal schedules for restoration of the
system using AC and DC restoration models, respectively. As

shown, the loading buses are restored with higher priority in
both models. However, bus B8 which is not a loading bus
and does not play a critical role in transmission dynamics,
is last component of the system to be recovered in AC
model. The restoration of transmission lines varies based on
their importance on recovering the system load. The total
load interruption cost of the system in AC and DC models
are $9,543,726 and $9,479,807, respectively. Intuitively, the
slightly higher interruption cost of AC model results from
satisfying the AC power flow constraints in restoration process.

V. CONCLUSIONS

A model for restoration of transmission network after natu-
ral disasters was proposed. The AC power flow constraints
were considered in the model. Mixed-integer programming
was used to formulate the problem. The induced nonlinearity
due to AC constraints were linearized using polyhedral ap-
proximation. The proposed model was tested on the standard
IEEE 118-bus test system. The extended numerical analysis
of the proposed model is left for future work.
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